

Détection des crises d'épilepsie basée sur l'analyse continue de l'électrocardiogramme : exploration en machine learning et caractérisation des paramètres discriminants

Carole NOUBOUE^{1,2}, Eva DIAB^{1,2}, William GACQUER³, Philippe DERAMBURE⁴, Bertille PERIN¹, Simone CHEN¹, Mélodie MERCIER-BRYCZMAN¹, Philippe DERAMBURE⁴, Julien DE JONCKHEERE⁵, William SZURHAJ^{1,2}

¹Service de Neurophysiologie Clinique CHU Amiens; ² Unité de recherche CHIMERE UR7516 ³Direction des Services Numériques, CHU Amiens, ⁴Service de Neurophysiologie Clinique CHRU Lille; ⁵CIC-IT Lille

Introduction

Détection des crises en ambulatoire :

- > Meilleure évaluation et contrôle de l'épilepsie
- > Intervention précoce d'un tiers au cours de la crise.

Détection crises convulsives : (EMG, accéléromètres,)

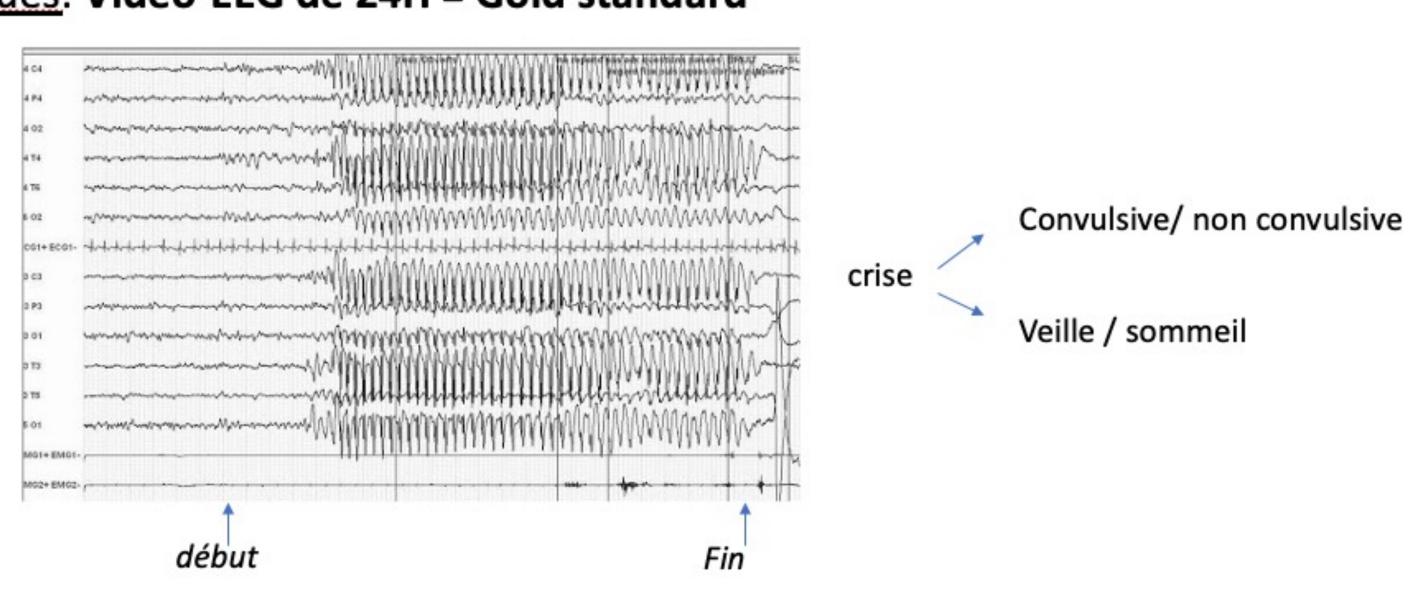
Détection crises non convulsives : Challenge !

- Piste prometteuse : Exploitation signal électrocardiographique $(ECG)^2$
- Intérêt accru pour les outils de machine learning (ML) qui extraient du signal les paramètres significatifs³

Objectif : - Evaluer les capacités de détection automatique des crises par l'ECG sur une cohorte prospective non sélectionnée

- Identifier le meilleur algorithme de ML
- Caractériser les paramètres cardiaques (fréquence cardiaque (FC / HR) et de variabilité de fréquence cardiaque (VFC) les plus discriminants.

Méthodes


Cohorte multicentrique (CHU Amiens, CHU Lille) et prospective (EPICARD):

- Patients ≥ 18 ans
- Vidéo-EEG ≥ 24 heures
- Qualité signal ECG insuffisante
- ≥ 1 crise d'épilepsie enregistrée

Recueil de données

Electrophysiologiques: Vidéo-EEG de 24H = Gold standard

<u>Cliniques</u>: Données démographiques des patients, caractéristiques de l'épilepsie

Extraction et traitement du signal ECG:

- Calcul de différents paramètres de VFC et FC 4
- Délinéation du tracé ECG de 24h en époques de 5 min, avec ou sans crise

(Age, sexe, antécédents significatifs, données IRM cérébrale .

Valeur Min, Max et de la différence Max-Min de chaque paramètre sur l'époque de 5 min

Paramètres	Calcul	Signification			
Analyse temporelle					
HRmean	Valeur moyenne de la FC sur 64 secondes.				
Quality	Qualité du signal dans la fenêtre de 64 secondes.	0 = qualité de signal basse ; 1 = qualité de signal élévée .			
RMSSD	Root mean square value of successive differences (RMSSD): Moyenne quadratique des differences successives des intervalles RR.	Liée à la variabilité à court terme, et donc à l'activité du système nerveux parasympathique			
SDNN	Standard deviation of normal to normal (SDNN) : Dispersion (statistique) de la valeur des intervalles RR.	Représente la variabilité globale du signal. Evalue le SNA de manière globale			
STV	Short term variability (STV) : Variabilité à court terme, calculée sur 1 min.	variabilité à court terme, et donc à l'activité du système nerveux parasympathique			
LTV	Long term variation (LTV) : Variabilité à long terme, calculée sur 1 min.	Représente la variabilité globale du signa. Evalue le SNA de manière globale			
Analyse spectrale					
LF	Bande de basses fréquences > 0.04 Hz et < 0.15 Hz	Sous l'influence de modulations sympathique et parasympathique, principalement influence par l'activité baroréflexe			
HF	Bande de basses fréquences > 0.15 Hz et < 0.4 Hz	Comporte uniquement les moduflations parasympathiques, principalement influencé par l'arytmie respiratoire sinusale.			
Non linéaire					
CSI	Représentation graphique d'un intervalley RR comparé à l'intervalle RR qui précède	Lié au système nerveux sympathique			
Graphique					
HFVI	Aire sous la courbe du signal RR normalisé et filtré entre 0.15 Hz et < 0.4 Hz	HFVI est une mesure relative de l'activité parasympathique, principalement influencée par l'arytmie respiratoire sinusale			

- 3) Analyse des paramètres de VFC par différents algorithmes de ML : Random Forest, Deep neural network, Gradient Boosted Trees, Extra Trees and **LightGBM** (https://www.dataiku.com/)⁵
 - Discrimination époques crise / pas crise

CHU

- 4) Pour chaque algorithme, calcul sensibilité, spécificité, ASC, Valeur prédictive positive, Précision, F1-score:
 - Toutes crises; puis convulsives/ non convulsives

Résultats

Au total: 313 crises (dont 255 non convulsives) chez 129 patients (H 60.5%; Âge moyen 37 ans)

- 40259 époques de 5 min
- Dont 397 avec crises

<u>Tableau</u>: Résumé des résultats d'analyse de Machine Learning

	Meilleur algorithme	Sensibilité	Spécificité	ASC	Valeur Prédictive Positive	F1 score	Précision	Paramètres discriminants
Résutats globaux (tout type de crise)	Extra Trees	90%	74.13%	0.878	78%	83%	82%	QualityMin CSIMax HFVIMeanMin
Crises convulsives	Extra Trees	94%	89.32%	0.977	89%	91%	91%	QualityMin HRMax HRMeanMax
Crises non convulsives	Extra Trees	83%	82%	0.913	81%	82%	83%	HRMax CSIMax SDNNMax LTVMax

Conclusion

Dans ce travail exploratoire, on montre que la détection de crise via l'analyse de l'ECG et l'exploitation des outils de machine learning est possible.

L'algorithme 'Extra Trees' confère les meilleurs résultats avec une sensibilité intéressante pour tout type de crises y compris les crises non convulsives.

Néanmoins la faible spécificité laisse supposer un taux important de fausses alarmes -> Intérêt de le coupler à d'autres outils (EMG, accéléromètres)